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Abstract

In the large-eddy simulation (LES) of high Reynolds number wall-bounded flows, wall modeling
is needed to alleviate the severe near-wall resolution requirement. Simple algebraic models such as
the instantaneous log-law are inadequate for predicting complex flows with strong pressure gradients
and separation. Under the sponsorship of AFOSR, we have explored two classes of wall models:
those based on the turbulent boundary-layer (TBL) equations and those based on control theory.
In this report, a recent application of the TBL equation model to LES of the flow over a cylinder at
super-critical Reynolds number will first be discussed. The emphasis of the report is, however, on
control based wall modeling, in which sub-optimal control strategy is used to find the wall stresses
that will force the outer LES toward a target profile. Results from channel-flow simulation indicate
that in order to obtain the correct mean velocity profile (the log law), the wall stresses must not
only model the physics but also compensate for numerical and SGS modeling errors. The data
generated by this sub-optimal control strategy are then used to derive a linear stochastic estimate
model. The mathematical formulation and issues of key importance in control-based wall modeling
will be discussed in detail. Current efforts towards a predictive and inexpensive wall model in the
control framework will also be presented.
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Chapter 1

Introduction

Large-eddy simulations (LES) of high Reynolds number flows are difficult to perform due to the
need to include a large number of grid points in the near wall region. While LES models the small
scales of the flow and resolves the large, dynamically important scales, near the wall, eddies scale
with the distance from the wall and move increasingly closer to the wall as the Reynolds number
increases. These eddies are dynamically important despite their size. Unfortunately, the eddy
viscosity sub-grid scale (SGS) models only make a small contribution to the total Reynolds stress.
This makes these models invalid near the wall [21], unless the LES grid is sufficiently refined to
resolve the near-wall vortical structures. The required number of grid points for such a wall-resolved
LES scales as Re? in an attached boundary layer [4], which is only a slight improvement on the
scaling for a full direct numerical simulation (DNS) of Re%*.

The technique of wall modeling was developed to reduce the Reynolds number scaling of LES
resolution, so that LES could be applied in practical situations. For recent reviews, see [13] and [35].
The approach has a long history dating back to the atmospheric science and oceanographic appli-
cations. Limited by the computational power of the time, Deardorff [16] was the first to implement
a model for the wall layer in an LES of a channel flow at infinite Reynolds number. He imposed
constraints on wall-parallel velocities in terms of their wall-normal second derivatives to ensure
the LES satisfied the log-law in mean. The wall transpiration velocity was set to zero. The first
“modern” wall model was developed by Schumann [37]. It is a modern wall model in the sense
that the wall stresses were determined directly by an algebraic model. The wall stresses were found
by assuming that they were in phase with the velocity at the first off-wall grid point and that
the deviation from their mean was proportional to the deviation of the velocity from its mean.
Since the flow was in a channel, both the mean wall stresses and mean velocities were known. The
transpiration velocity, as in the case of Deardorff [16], was set to zero.

Many improvements to this basic model have been made in the intervening years. For example,
Piomelli et al. [36] added an offset to the velocity to account for the inclination of the eddies to
obtain:

u(:z: + Asa y17z)
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where A; is an empirical displacement related to the mean orientation of vortical structures near
the wall, ¥ is the wall-normal coordinate of the first off-wall grid points, and (-) denotes averaging
in the wall-parallel (z-z) plane. For atmospheric boundary layers, Mason & Callen [27] enforces an




instantaneous logarithmic law in each grid cell adjacent to the wall. Other efforts include those by
Grotzbach [18], Werner & Wengle [44], and Hoffman & Benocci [20]. While these types of algebraic
models produced reasonable results in the LES of plane channels and annuli, they are in general
inadequate for flows in more complex geometries. In these flows, adverse pressure gradients and
separated regions are common, and methods based on an equilibrium balance of stresses and a
logarithmic velocity profile give inaccurate results.

To address this robustness issue in wall modeling, several investigators used more elaborate
near-wall flow models to compute the wall stresses (see e.g. [8] and [13]). This type of approach
divides the computational domain into two regions: one near the wall and one away from the wall.
A simplified set of equations based on turbulent boundary-layer (TBL) approximations are solved
on a near wall grid separate from the outer LES grid, subject to boundary conditions determined
from the outer LES velocity together with the no-slip wall. The equations solved in the wall-layer
are of the following general form,
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although simplified versions, with the right hand side set to zero or the pressure gradient alone,
have also been considered [13, 42]. In Eq. (1.2) v, is given by a RANS eddy viscosity model, and
the pressure is imposed from the LES solution and assumed constant across the wall layer. The
computed wall stress is then provided to the LES as a boundary condition. While this method
does require the solution of an extra set of equations, the simplifications made in these equations
makes its cost much less than the evaluation of the LES equations. This method was tested in a
plane channel, square duct, and rotating channel by Balaras et al. [8] and in a plane channel and
backward-facing step by Cabot & Moin [13]. More recently, Wang & Moin [42] used this method
with a dynamically adjusted RANS eddy viscosity to perform an LES of an airfoil trailing edge flow
[41] with incipient separation. The results are better than those of the algebraic models, since the
TBL equations can account for more of the physics of the flow. Nonetheless, there is insufficient
evidence of robustness of this approach, particularly on coarse meshes and at very high Reynolds
numbers.

To further assess the accuracy of this approach for high Reynolds number flows under coarse
mesh resolution, a more severe test case of the flow over a cylinder at supercritical Reynolds number
has been considered. This is described in detail in Chapter 2. The results are mixed. While the
method is capable of capturing correctly the delayed boundary-layer separation and reduced drag
coefficients after the drag crisis, the Reynolds-number dependence of the drag coefficient has not
been captured, and the solutions become increasingly inaccurate at higher Reynolds numbers. It
is argued that at such marginal resolution, the SGS modeling errors and numerical errors tend
to dominate the LES in the near-wall region, which cannot be corrected by a physical based wall
model. '

The difficulty of formulating a robust wall model was highlighted in [12]. In that work, a
backward facing step LES was performed using the “exact” time series of the wall stress from a
resolved LES as the wall model. The results of this approach were not satisfactory and in fact
not an improvement over the other types of wall models previously mentioned. This indicates that
SGS and numerical errors are playing an important role in the coarse grid LES, which have not
been accounted for by the previous wall models. To investigate this hypothesis and determine
what information a wall model must provide to the LES, we used optimal control techniques to
compute the wall stresses in a channel LES at Re, = 4000. This work is discussed in Chapter 3
(see also [33, 5]). A cost function is defined to be the difference between the plane-averaged LES
streamwise and spanwise velocity fields and their known mean values (log-law in the streamwise




direction and zero in the spanwise direction). Adjoint equations are used to determine the cost
function derivatives, and iterations are performed at each time step to determine the best wall
stress. The simulation results confirm that, to obtain the correct mean velocity profile, the wall
stresses must not only model the physics but also compensate for numerical and SGS modeling
errors. The data generated by this suboptimal control strategy is then used to derive a linear
stochastic estimate (LSE) model which predicts the wall stresses from the near-wall velocity field.
When used in actual simulations, the LSE model is shown to yield accurate mean velocity profiles
over a range of Reynolds numbers. However, it is found to be sensitive to the numerical method,
SGS model, and grid employed.

While valuable insight has been gained from the above control-based wall modeling, the method
is not useful as a predictive tool since a target velocity profile must be specified a priori. The
computational cost for the sub-optimal control is very high since it requires both the solution
of adjoint equations and many iterations to achieve convergence. Furthermore, the LSE models
generated from such computations are too sensitive to the numerical parameters to construct a
universal LSE coefficient database. To overcome these drawbacks, we have explored a low-cost
modeling approach using techniques borrowed from optimal shape design [31] and a RANS model
to formulate a feedback controller. The mathematical framework and some test results are presented
in Chapter 4.



Chapter 2

Wall Modeling in High Reynolds
Number Flow over a Cylinder

As mentioned in the previous chapter, wall models based on TBL equations and their simplified
forms [8, 13, 42] have received much attention in recent years. These models, used with a RANS
type of eddy viscosity, have shown promise for complex-flow predictions. The objective of this
chapter is to further assess the viability and accuracy of this technique for high Reynolds number
complex wall-bounded flows.

The flow around a circular cylinder represents a canonical problem for validating new approaches
in computational fluid dynamics. It is therefore reasonable or even necessary to subject the LES
wall modeling methodology to the same “grand challenge”. To take the best advantage of wall
modeling, we concentrate on the super-critical flow regime in which the boundary layer on the
cylinder becomes turbulent prior to separation. This is, to our knowledge, the first such attempt
using LES, although a related method known as detached-eddy simulation (DES), in which the
entire attached boundary layer is modeled, has been tested in this type of flow [39]. Breuer [11]
recently conducted an LES study at a high sub-critical Reynolds number of Rep = 1.4 x 10°, and
showed fairly good comparison with experimental data in the near wake. In the present work, three
simulations, at Rep = 5 x 10%, 1 x 10, and 2 x 108, have been performed. Simulation results and
comparisons with experimental data are summarized below.

2.1 Numerical method and procedure

The same LES code and wall model implementation as used in [42] are used for the present cal-
culations. The energy-conservative numerical scheme is of hybrid finite-difference/spectral type,
written for a C-mesh [28]. The time advancement is achieved by the fractional-step method, in com-
bination with the Crank-Nicolson method for viscous terms and third-order Runge-Kutta scheme
for convective terms. A multi-grid iterative procedure is used to solve the Poisson equation for
pressure. The SGS stress tensor is modeled using the dynamic SGS model [17, 25].

The computational domain has a spanwise size of 2D (D = cylinder diameter), over which the
flow is assumed periodic and 48 grid points are distributed uniformly. In the planes perpendicular
to the span, 401 x 120 grid points are used in the C-mesh, extending approximately 22D upstream
of the cylinder, 17D downstream of the cylinder, and 24D into the far-field. Potential-flow solutions
are imposed as boundary conditions in the far-field, and convective boundary conditions are used
at the outflow boundary. Running at a maximum CFL number of 1.5, the non-dimensional time
step AtUy /D typically varies between 0.0030 and 0.0045. To obtain the results presented here,
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Figure 2.1: Instantaneous vorticity magnitude at a given spanwise cut for flow over a circular
cylinder at Rep = 10°. 25 contour levels from wD /Uy = 1 to wD/Us = 575 (exponential
distribution) are plotted.

the simulations have advanced at least 150 dimensionless time units. The statistics are collected
over the last 75 or so time units.

Approximate boundary conditions-on the cylinder surface are imposed in terms of wall shear
stress estimated from a wall model of the form

0 Ou;| _10p .
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This is a simpler variant of the TBL equation model (cf. Eq. (1.2)) which allows for easier imple-
mentation and lower computational cost. Although Wang & Moin have shown [42] that the full
TBL equations (with dynamically adjusted v;) give better results in their trailing-edge flow, the
discrepancy may be partly related to a surface curvature discontinuity which is absent from the
cylinder surface. Since the pressure is taken from the LES at the edge of the wall layer, Eq. (2.1)
can be integrated to the wall to obtain a closed-form solution for the wall shear stress components

[42] 5 .
4 19p ydy
. — = 2.
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t

where ug; denotes the tangential velocity components from LES at the first off-wall velocity nodes,
at distance J from the wall. In attached flows these nodes are generally placed within the lower
edge of the logarithmic layer. In the present flow, however, 6t (in wall units) is found to vary
from 0 to 100 depending on the local skin friction. The eddy viscosity is modeled by a damped

2
mixing-length model: v/v = sy} (1 —e v/ A) , where y} = yyu,/v is the distance to the wall
in wall units, k = 0.4, and A = 19.

2.2 Results and discussion

In Figure 2.1, the contours of the vorticity magnitude at a given time instant and spanwise plane
are plotted for Rep = 108. Large coherent structures are visible in the wake, but they are not
as well organized and periodic as in typical Kdrmdn streets at lower (sub-critical) and higher
(post-critical) Reynolds numbers. Compared to flows at lower Reynolds number (e.g. [23, 11]), the
boundary-layer separation is much delayed and the wake is narrower, resulting in a much smaller
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Figure 2.2: Mean pressure distribution on the circular cylinder. , Present LES at Rep = 105;
o, Experiment of Warschauer & Leene [43] at Rep = 1.26x 10 (spanwise averaged); A , Experiment
of Flachsbart (in [45]) at Rep = 6.7 x 10°.

drag coefficient. Note that the rather thick layer seen along the cylinder surface consists mostly of

vorticity contours of small magnitude. These levels are necessary for visualizing the wake structure,
but are not representative of the boundary-layer thickness. The true boundary layer, with strong
vorticity, is extremely thin in the attached region.

A comparison with two sets of experimental data of the mean pressure distribution on the
cylinder surface is depicted in Figure 2.2. Very good agreement is observed between the LES
at Rep = 10% and the experiment of Warschauer & Leene [43] which was performed at Rep =
1.26 x 10%. The original Cp data in [43] exhibit some spanwise variations; for the purpose of
comparison the average value is plotted. Relative to the measurements of Flachsbart (see [45]) at
Rep = 6.7 x 10%, the LES Cp shows smaller values in the base region. Note that Flachsbart’s
data contain a kink near 6 = 110°, indicating the presence of a separation bubble. This type of
separation bubble is characteristic of the critical regime, and is difficult to reproduce experimentally
or numerically due to sensitivity to disturbances.

In Table 2.1, we compare the mean drag coefficient, the base pressure coefficient, and the Strouhal
number from the LES at Rep = 10° with the experimental values. The agreement with the mea-
surements of Shih et al. [38] is reasonably good. The LES somewhat overpredicts the drag coefficient
compared with Shih et al. [38], but underpredicts it relative to Achenbach [2] (cf. Figure 2.3). The
Strouhal number of 0.22 from Shih et al. is for a rough-surface cylinder; no coherent vortex shedding
was observed for smooth cylinders at Rep larger than 4 x 10°%. Indeed, it is generally accepted that
periodic vortex shedding does not exist in the super-critical regime of flow over a smooth cylinder
[45]. From our simulation, a broad spectral peak of the unsteady lift centered at St = 0.28 is found.
It can be argued that although the LES is performed for a smooth cylinder, the discretization of
the cylinder surface and the numerical errors due to under-resolution may act as equivalent surface
roughness, causing the flow field to acquire some rough-cylinder characteristics. The flow at high
Reynolds number is very sensitive to surface roughness and to the level of free-stream turbulence,



Table 2.1: Drag, base pressure coefficient and Strouhal number for the flow around a circular
cylinder at a Reynolds number of 10°.

CD _Cp,base St
LES 0.31 0.32 0.28
Exp. (Shih et al. [38]) 0.24 0.33 0.22
Exp. (Others, see [45]) 0.17-0.40 - 0.18-0.50
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Figure 2.3: Drag coeflicient as a function of Reynolds number. , Achenbach [2]; e , Present

LES.

which contribute to the wide scatter of Cp and St among various experiments in the literature
[45], listed at the bottom of Table 2.1. Other factors causing the data scatter include wind-tunnel
blockage and end-plate effects. Our simulation results fall easily within the experimental range.
Generally speaking, there is a lack of detailed experimental data at super-critical Reynolds num-
bers. In particular, velocity and Reynolds-stress profile measurements are non-existent, making a
more detailed comparison impossible.

To assess the robustness of the computational method, we have performed simulations at Rep =
5 x 10° and 2 x 10%, in addition to the initial attempt at Rep = 1 x 10%. The predicted mean
drag coefficients are plotted in Figure 2.3 along with the drag curve of Achenbach [2]. While the
simulations predict Cp rather well at the two lower Reynolds numbers, the discrepancy becomes
large at Rep = 2 x 10°. More significantly, the LES solutions show relative insensitivity to the
Reynolds number, in contrast to the experimental data which exhibit an increase in Cp with
Reynolds number after the drag crisis. Similar Reynolds-number insensitivity has been observed
for the other quantities shown previously.

Finally, the skin-friction coefficients predicted by the wall model in the LES calculations are
plotted in Figure 2.4 against the experimental data of Achenbach [2] at Rep = 3.6 x 105. The
levels are very different on the front half of the cylinder, but are in reasonable agreement on the back
half. The boundary-layer separation and the recirculation region are captured rather well by the
LES, indicating that they are not strongly affected by the upstream errors. The different Reynolds
numbers in the LES and the experiment can account for only a small fraction of the discrepancy.
Note that our computed C} values are comparable to those reported by Travin et al. [39] using DES.
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Figure 2.4: Skin friction distribution on the cylinder from LES: —— , Rep = 5 x 10% ---- |
Rep =1 x 10% —-— |, Rep = 2 x 105. o , Experiment of Achenbach [2] at Rep = 3.6 x 106.

Travin et al. attribute the overprediction of Cy before separation to the largely-laminar boundary
layer in the experiment, which has not been modeled adequately in either simulation. Poor grid
resolution, which becomes increasingly severe as the Reynolds number increases, is another potential
culprit in the present work. In addition, an overprediction of the skin friction by the present wall
model has also been observed by Wang & Moin [42] in the acceleration region of the trailing-
edge flow, suggesting that this simplified model may have difficulty with strong favorable pressure
gradients.

2.3 Concluding remarks

A numerical experiment has been carried out to compute the flow around a circular cylinder at
supercritical Reynolds numbers using LES. The simulation is made possible by the use of a simple
wall-layer model, Eq. (2.2). The computational solutions correctly capture the delayed boundary-
layer separation and reduced drag coeflicients consistent with measurements after the drag crisis.
In quantitative terms, the mean pressure distributions and overall drag coefficients are predicted
reasonably well at Rep = 5 x 10° and 106. However, the results are inaccurate at higher Reynolds
numbers, and the Reynolds-number dependence of the drag coefficient is not captured. It must be
pointed out that the grid used near the cylinder surface, particularly before separation, is quite
coarse judged by the need to resolve the outer boundary-layer scales. This is in contrast to the
trailing-edge flow case [42] for which the model works well. At such marginal resolution, the SGS
modeling errors and numerical errors tend to dominate the LES in the near-wall region, which
cannot be corrected by a physical based wall model such as the one employed here. A control-
based model, to be discussed in the next chapter, can account for these errors and hence may
provide a better alternative. In addition, based on the experimental observation, the boundary
layer is largely laminar prior to separation, which has not been modeled adequately by the current
wall-layer model.



Chapter 3

Wall Modeling Using Optimal Control
Techniques

This chapter describes some recent applications of control theory to the wall modeling problem.
As noted in Chapter 1, there is evidence that even the analytically correct wall stresses would
form a poor LES wall model. Chapter 2 shows that a wall model based purely on physics does not
produce accurate solutions for high Reynolds number flows under coarse grid resolution. Hence, it is
desirable to formulate a wall model with the capability to compensate for the additional numerical
and SGS modeling errors. Since there is no known method for quantitatively determining the exact
errors a priori (or creating a high fidelity model for them from @ posteriori data), techniques from
optimal control theory have been used to drive the LES system towards a desired state. These
techniques were chosen since they seek to minimize a cost function whose minimization should
improve the LES results. In doing so, wall stresses that both compensate for the missing physics
and the numerical errors can be found.

Optimal control is a branch of control theory that deals with determining the set of controls
from some control space of £2 functions that minimize a given cost function, often denoted as J.
There has been and continues to be considerable application of this technique to problems in fluid
mechanics. Early applications in conjunction with turbulence simulations involved minimizing drag
in a channel [15, 9]. For a review of some of the more recent applications of this approach, see [10]
and the references therein. These successes provided evidence that the optimal control technique
could be successfully applied in situations with complex physics. A new challenge in the context of
wall modeling is to use it in a situation where both the physics and numerics need to be accounted
for.

This approach was motivated by two results. The first was the previously mentioned work of
Cabot [12] demonstrating that resolved LES wall stresses did not perform well as a wall model. A
second result was that of Bagwell et al. [7, 6] in their use of linear stochastic estimation (LSE) to
derive a wall model. A linear convolution of form 75 = L;; * u;(-,y,) withi=1,3 and j = 1,2,3
was used as the wall model. The convolution coefficients, L;; were found using the LSE technique
of minimizing the mean square error of this model with DNS training data at Re, = 180 [22].
This model worked well in a channel flow at the same Reynolds number. A channel flow LES was
then performed using convolution kernels that were extrapolated to Re, = 640 [6]. In this case, -
the LSE model performed only marginally better than the shifted model of Piomelli et al. [36]
(cf. Eq. (1.1)). This result again demonstrates the possibility that the effect of the unmodeled
components (numerical and SGS modeling errors) play a significant role in the wall modeling
problem. It also shows that if LSE is to be used to develop wall models, the training data must




come from an LES at comparable Reynolds numbers. However, these Reynolds numbers are, in
general, too high to perform an LES without a wall model. Therefore, a scheme based on optimal
control techniques will be used to perform such an LES, thereby generating training data that is
at the correct Reynolds number and will account for numerical and SGS modeling errors. The
methodology and results are discussed in the remainder of this chapter. They are also described in
[32, 33, 5].

3.1 Nume_rical method

A second-order accurate finite difference scheme is used to discretize the LES equations on a
staggered grid system [19]. Given the simple geometry of a channel flow considered in this study,
more accurate (spectral) methods could have been used. However, these highly accurate methods
are not flexible enough to handle industrial applications with complex geometries (e.g. flow around
an airfoil), where both low-order numerics for simplicity and wall modeling for high-Reynolds
number boundary layers are needed. A staggered grid system is used to avoid the decoupled
pressure-velocity mode as well as the prescription of a boundary condition for the pressure. The
time integration is a third-order Runge-Kutta scheme for all the convection and diffusive terms.
The diffusive terms in the normal direction to the wall are not treated implicitly since only coarse
grid computations are considered. Periodic conditions are imposed in the two directions z; and
z3 (or z and 2) parallel to the walls so that the Poisson equation can be solved efficiently using a
FFT-based Poisson solver.

The subgrid scale model is the Smagorinsky model with the coefficient determined by the plane-
averaged dynamic procedure [25]. Unless otherwise stated, all quantities are nondimensionalized
by the friction velocity, u,, and channel half-height, h. The channel walls are at y = +1. The skin
friction Reynolds number is then defined as Re, = u,h/v. When the mean flow is converged in
the statistical sense, the mean streamwise pressure gradient is equal to the mean wall stress, that
is, —0(p)/0z = (1y) = 1.

Since ‘non-resolved’ LES is considered in this study, the classical no-slip boundary condition for
the velocity components is replaced by a set of approximate boundary conditions. More precisely,
the transpiration velocity (in some cases set to zero) and the two shear stresses 7% and 7% are
provided to the momentum equation in the z;— and z3—direction respectively. The sketch in
Figure 3.1 shows the location of the variables and boundary conditions in the staggered grid system.
The wall normal direction is x5 (or y) while u; (or u,v,w) and p are the velocity components and
the pressure. The shear stresses 7% and 73} are prescribed either from one of the wall stress models
discussed in Chapter 1 or the optimal control strategy. The wall transpiration velocity is set to
zero or determined using the control strategy.

3.2 Optimal formulation
In the process of deriving a new wall model for LES, it is crucial to keep in mind that:

1. The objective is to provide an approximate boundary treatment able to handle very large
Reynolds numbers. In this respect, using DNS data as a guide may not be the most judicious
choice since these data are only available for low to moderate Reynolds numbers.

2. In any coarse grid LES where the first grid point is within the logarithmic region, the turbulent
integral length scale (L = xy) is less than half the grid spacing (Ay = y). As a consequence
both sub-grid modeling and numerical errors are important. Therefore the approximate

10
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Figure 3.1: Staggered grid system used in this study.

boundary condition should compensate for these errors if the correct mean profile is to be
obtained in a coarse grid computation. In this case the best shear stresses to supply are not
the physical ones, as from a DNS.

It follows that the reference data used to compare or derive new wall models should be obtained
from a high Reynolds number LES simulation on a coarse grid. Of course, such a simulation requires

- a good model for the near-wall region in the first place. The optimal control framework is applied

here to conduct such a simulation without a priori knowledge of the necessary wall stress boundary
conditions. The case of a channel flow with constant pressure gradient is considered (9(p)/0z = 1).
The objective is to optimize the shear stresses 7{ and 73}, and in some cases the transpiration
velocity vy, in order to minimize a given cost function. The mathematical formulation is detailed
in the following subsections. It is given for the most general case, in which wall stresses and
transpiration velocity act as controls, and penalty terms for the deviation from the mean velocity
profile, deviation from the rms velocity fluctuations, and control penalty are included in the cost
function. Simpler cases may easily be derived by setting certain terms to zero.

3.2.1 State equation

The problem considered is governed by the unsteady, incompressible, filtered Navier-Stokes equa-
tions as well as the divergence-free constraint which arises from continuity. The governing equations

read:
Ou;  Ouw; _ _Op o _f?_( (f’w Q&))
ot + oz; 31:,-+611+3:vj (422 B(L'j+a$i
(3.1)
Ouj
oz
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where the §;; represents the constant streamwise pressure gradient. Note that no specific notation
is used to describe the spatial filtering associated with the LES formulation. Each variable in the
previous and subsequent equations should be understood as a low-pass filtered version of the actual
variable (e.g. u; = U;, where the overbar stands for the filtering operator). Eq. (3.1) is valid for any
subgrid model based on the Boussinesq assumption. The boundary conditions, specified in terms
of the control parameter ¢ defined below, on Eq. (3.1) are:

Ou | Ovn _ iqg
Oyn 0z ~ py
Uy = Py (3.2)
ow Ov, 1
ot T W™

“where the subscript n stands for the outward normal to the wall and 14, is the wall value of the
total dynamic viscosity v + 14 (in this work v, = v). The control parameter ¢ is defined as
¢= (¢’u’¢’ua¢'w) = (Tluévvw77§%) aty=+1and ¢ = (¢u7¢va¢w) = —(T}‘éy ’Uw,‘l'élé) aty=-1

In the classical optimal control procedure the objective is to reduce the given cost function for
some period of time. This method has been proven to be efficient [1]. However, this is a very
expensive procedure in terms of storage and manipulation of many 3D fields over the entire period
under consideration [15]. We therefore make use of a more affordable sub-optimal procedure in
which the state equation is first discretized in time, then a control procedure is used to minimize
the cost function over a short period of time (the time step) at each time step [9]. This method does

- not necessarily provide the ‘best’ answer but it is much more cost effective than the optimal strategy.

The equation of state (3.1) is therefore discretized in time by assuming an implicit discretization:

97 . : : n+1
urt popag |98 Qv 0 ((u + 1) (?1‘1 + a“’))] = RHS"

0r; Oz; Oz O0z; Ox;
(3.3)
n+1
_ J _
2BAt o, 0

The boundary conditions, Eq. (3.2), apply to Eq. (3.3) and the second order Crank-Nicolson
method is recovered if the parameter 8 is chosen to be 8 = %. Note that in Eq. (3.3) only the
terms involving the solution at the current time step n + 1 are written explicitly. This is because
in the sub-optimal framework developed in Bewley et al [9], only the terms at time n + 1 in the
semi-discretized state equation are used in the optimization process. The terms which depend
only on the variables at the previous time step n are gathered in the generic notation RHS™ and
disappear in the analytical development. Note that there is a slight inconsistency between the time
integration used to solve the state equation (explicit third-order Runge-Kutta, Section 3.1) and
time integration supposed in the process of defining the control problem (implicit Crank-Nicolson).
The optimal control problem and the resulting optimization algorithm proposed in Section 3.2.4
may therefore be considered as only approximation of the ‘exact’ control problem that should be
defined and solved for the flow problem considered. However, in view of the results shown in
Sections 3.3 and 3.5, and the small time steps used for the explicit scheme, this approximation is
sufficient to provide valuable insight for identifying a practical wall model for coarse grid LES.

3.2.2 Objective function

In the sub-optimal control approach, the boundary conditions (specified by the control parameter
¢) are used as control to minimize an objective function at each time step. The goal is to provide
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numerical boundary conditions to the flow solver so that the overall solution is consistent with what
is expected in a channel flow. The objective function is specified as follows:

3 3
u;g) = ) Jmean,i(u;9) + Z Jrms,i(u; ¢) + Z Jpenalty,i($)- (3.4)

i=1,3 i=1 i=1

The objective function consists of the three components. Jmean measures the distance from the
plane-averaged LES solution to a desired reference velocity profile. The second component, Jrms
measures the distance from the plane-averaged velocity fluctuation intensities to desired target pro-
files. Finally, the third component, J. penalty penalizes the use of large controls ¢. The component
objective functions are defined below

For the mean streamwise velocxty the target or reference profile is taken as a logarithmic velocity
profile throughout the channel: u} ref = = k~!lny* + C. The spanwise velocity reference profile is
simply Ug ref = = 0. The difference between the reference velocity profile and the plane-averaged LES
solution is a function of the wall-normal coordinate, y, and can be expressed as

0u; (y) = %//(‘ui - “i,ref) dedz (1=1,3) (3.5)

where A is the channel area in the homogeneous plane. Note that any reference profile suitable for
a parallel flow could have been used. Notably, a more realistic shape could have been used near
the channel center. However, the logarithmic profile is well suited for the near-wall region since
we are using a coarse mesh and the Reynolds number, Re, = 4000, is sufficiently high so that the
first grid point lies in the logarithmic region (y* =~ 121). The mean component of the objective
function is then:

+1
Tmeani(u; ) = a; /_ S Py, (=19 (3.6)

Note that there is no need to specify a target profile for the plane-averaged wall-normal velocity
since that will be identically zero at each time step provided there is no net transpiration velocity
through the boundaries.

The velocity fluctuation intensities are targeted through the Jyms component of the objective
function. The plane-averaged, mean square velocity fluctuations are compared at each time step
to the mean square velocity fluctuations, (u: r ef)z’ from the LES of Kravchenko et al. [24] which
was performed at the same Reynolds number using a zonally defined mesh to resolve the near-
wall region. The distance between the plane-averaged mean square velocity fluctuations and their
reference profiles can be measured as

bu®) = 5 / / ) 1) dudz, (i=1,2,3), (3.7)

where (u;) denotes the average over the homogeneous directions of the velocity component u;. The
velocity fluctuation intensity component of the objective function is then

+1
Fems i) = B [ 0P dy (i=1,2,9) (3.8)

Finally, to prevent numerical instabilities it is necessary to regularize the control, that is, the
approximate boundary conditions, by including a penalty component in the overall objective func-
tion:

Y A ,
jpena,lty,z‘(@ = j ¢'%Li drdz + A [y::i:l 5z‘2¢32 drdz  (i=1,2,3). (3.9)
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The first term in the penalty component attempts to prevent the mean square norm of the control
parameter from becoming too large. In the case of transpiration velocity control, it was found
necessary to prevent the transpiration velocity from becoming too large at any single point, hence
the second term in the penalty component (3.9) was added.

Note that each component of the objective function includes a scalar parameter: a;, G;, ¥;, or A.
These scalars allow the relative importance of the various objectives to be changed in the overall
objective.

3.2.3 Adjoint problem

The gradient of the objective function J with respect to the control parameter ¢ is estimated by
using the Fréchet differential [40] defined for any functional F as:

DF - F(¢+ed) — F($)
Uil R .10

where ¢ is an arbitrary direction. From Eq. (3.4) the gradient J is:

D‘7" = Za,[// 6"‘Ll,dmdydz

+=1,3

+Zﬁ,/// bules )y trayar (3.11)
+>\Z//y=il 63, bu, dxdz+;7i%//;:il Pu; bu; dz dz

where U; denotes the Fréchet derivative of u;!. The gradient of J cannot be calculated directly
from Eq. (3.11) since the derivatives U; are unknown.

We now formulate an adjoint problem to find the gradient (3.11). The first step is to take the
derivative of Eq. (3.3) with respect to the control ¢:

oP Bu, oU; g 81/{ _
(3.12)
BU] =
6.1:] =0
with boundary conditions:
ou ov, 1
Oyn + 8z vy Pu
Vo = by (3.13)
ow oV, 1+
0z w”

The right-hand side term in Eq. (3.12) is now zero since the flow field at time step n does not
depend on the control ¢ for the current time step. Therefore, the superscript ‘n + 1’ has been

80 (ui—(ug
!Technically, the second term in Eq. (3.11) should include the integral f [ Ja 2—-'#(11; —(Us:)) dz dydz, but

we make the approximation that ({;) = 0 since |(¢4)| < |U;| in general.
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dropped for clarity. Note also in Eq. (3.12) that the Fréchet derivative of the eddy viscosity was
assumed to be zero, that is, Dv;/D¢ = 0. The latter approximation can be justified for short time
intervals [14]. Moreover, this system of equations is linear in the variables If; and P, where P is
the Fréchet derivative of the pressure. Therefore it can be written in the form:

A© =0, (3.14)

where A is the linear operator acting on the vector © = (U;, P)T. The linear system (3.14) with
unknown boundary conditions (3.13) cannot be solved directly; instead, an adjoint operator, A%,
is formulated by considering the equation

(A0,¥) = (6, A*¥) + BT, (3.15)
where (-,-) stands for the inner product defined as the integral over the flow domain of the dot
product of the two vectors and ¥ is the adjoint state vector ¥ = (n;,7)7. Finding the adjoint

operator, A*, and the boundary terms, BT, is a straightforward exercise in integrating by parts.
The adjoint operator acting on the adjoint state vector, that is, A*¥ is defined by the equations:

i Ou; o ] dni , On;
Ay = ] A [5%“7:‘ e~ ide O ((”+”t) (3'3? +£L))] (3.16)
_Apdn
ox;
and the boundary terms are:
BT = At / / (Press + Conv + Visc) dz dz (3.17)
y==%1
with
Press = Pno, — Vpr
Conv = nlUiv, (3.18)
. ou; adv, oni . Onon
\Y = - ; —-U; .
= T [n’ (6yn * 6$i) ' (6yn " b
From Eq. (3.14), the relation (3.15) defining the adjoint operator reduces to
(A*9,0) = —BT. (3.19)

3.2.4 Gradient estimate

We now have the liberty to choose boundary conditions and right-hand side terms for the adjoint
problem such that the relation (3.19) can be utilized to calculate the gradient of J. By comparing
Egs. (3.11), (3.17), (3.18) and (3.19), it appears that a judicious choice for the definition of the
adjoint problem is:

. a6y + B0y (u - (u))

av=2| 51,,%633(;,,,,—(12”)—) ) (3.20)
0
with boundary conditions at the wall:
mvn + uwg—;: =0
Nn = 0 (3.21)
13Un + ng;'—: = 0.
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In doing so, Eq. (3.19) can be re-written as:

DJ - .
D—‘; = At / /_il [nmu ( — 2, 6’;2)¢u+n3¢w] do dz

~ 2 ~
+A—// 3 dzdz + —-// by, dr dz
A y::{:l u2¢u2 ‘:Zl’y’tA y::tl ¢’u ¢

Since Eq. (3.22) is valid for all directions $, the gradient of J may be extracted:

DT 2n

Do Aty + 7 —$1

DJ _ O0n2n 29

e At (TI'w 2uy By ) —=¢2 + ¢2 (3.22)
Dg 273

D¢3 - A“"'73,111 + _A ¢3)

where the subscript w stands for the values at the wall. A control procedure using a simple steepest
descent algorithm at each time step may now be proposed such that:

n+1,k — gn+lk DJ(¢’R+1 k)
¢ +LE+1 ¢ +1 D—qs (323)

where the parameter u can be varied to change the rate of convergence and the extra superscript
k refers to the subiterations in the descent algorithm. Note that the adjoint operator depends on
the state vector (u;, P)T at time n 4 1 so that the state equation and the adjoint problem must be
solved simultaneously to obtain the sub-optimal approximate boundary conditions. The following
algorithm is used a each time step of the flow solver to obtain the optimized boundary conditions:

1. Start with the state vector (u;, P)T at time n, the adjoint vector (7;, 7)T and control parameter
¢ at sub-iteration ny,

2. Use Eq. (3.20) with boundary condition (3.21) to compute the adjoint vector at sub-iteration
ng+1. For this purpose, the operator for the adjoint velocity, Eq. (3.16), is re-written as:

1 1 on Ou; on; 0 Oni | Onj
S [ et A (Gl -as ) | I

where only the first term is taken at sub-iteration ngy,, the others being considered at sub-
iteration n;. A Poisson equation is solved for the adjoint pressure at each sub-iteration to
enforce the divergence-free condition on 7, L

. Compute the gradient of the cost function at sub-iteration ny; by using Eq. (3.22),

3
4. Compute the control parameter ¢ at sub-iteration ngy; by using Eq. (3.23),
5. Compute the L2-norm of the difference ¢™s+1 — §™.

6

. If it is more than 0.1% of the Lo-norm of ¢™*, then go back to step 1. Otherwise, use ¢, and
¢ as approximate boundary conditions to compute the state vector at time n + 1.
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3.2.5 Validating the gradient of the objective function

To validate the gradient computation, finite difference approximations to the gradient were calcu-
lated. This is relatively simple to do. Given a control vector ¢ and a velocity field u, choose a
small value of € and perturb the control vector at one point by the amount € (e.g. add € to 7% at
one point on the lower wall) to obtain a new control vector ¢ + e¢. Now advance the velocity field
one time step and explicitly calculate the value of the objective function (3.4), that is, calculate
J (¢ + €d). The approximate gradient in the direction ¢ is then:

DT ;  J($+ep)—T(9)
5 ¢¢ ~ ; (3.25)

By comparing the approximation (3.25) to a centered difference approximation, it was found
that € = 10~3 produces good approximations to the gradient. By successively perturbing the
control vector ¢ at every point, it is possible to approximate the entire gradient D.J/D¢. This
finite difference gradient approximation can then be compared to the gradient approximated by
the adjoint problem described above.

It was found that the correlation between the two gradient approximations was generally in
excess of 80%. When the transpiration velocity was not included in the control, the correlation was
generally in excess of 90%. Thus we are led to believe that the adjoint problem defined above may
be yielding satisfactory approximations to the gradient of the objective function, but further work
is necessary to determine if the gradient approximation can be improved.

3.3 Results: optimal control without transpiration velocity

Several LES’s have been performed to test the optimal control strategy described in the previous
section. We first investigate the case when only the wall stress boundary conditions are used as
control. The wall normal velocity is set to zero at the boundary: v, = ¢, = 0. In addition, we
consider an objective function for mean flow only, by setting 3; to zero. The a;’s are taken such
that a; = ag = 1. Several numerical tests were performed to fix the coefficients u, v;, and ;3. It
was found that the value p = 5 x 10® ensured good convergence of the steepest descent algorithm,
while 7; = 73 = 4 x 107° ensured that the whole algorithm is stable.

3.3.1 Statistics

In this section, the grid is uniform in all directions with 32 x 33 x 32 cells and the domain size is
(27h,2h,27wh/3) where h is the channel half height. The Reynolds number based on the friction
velocity u, and h is 4000. In wall units, the grid spacing is Azt ~ 785, Ay ~ 242 and Azt ~ 262.
Since a staggered mesh system is used, the first u velocity point is located at y* = 121. At this
coarse resolution, most of near-wall turbulent structures cannot be captured so that an effective
wall model is necessary to compensate. The computation was run for a sufficiently long period
to be statistically independent of the initial condition and then statistics were accumulated over a
time period of order 20 h/u..

Figure 3.2 shows the mean velocity profile from the LES in which the optimal procedure of
Section 3.2 was used to obtain the approximate boundary condition. The mean value of 715 was
either provided by the optimal procedure itself or re-computed so that the first point coincides with
the logarithmic law (u)™ = 2.41lny* + 5.2. The results are very similar in the two cases. The
overall agreement is much better than with the shifted model [36], Eq. (1.1), which is also shown
in Figure 3.2 for easier comparison. An artificial boundary layer still develops between the second
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Figure 3.2: Mean velocity profiles for Re,; = 4000. —— , control includes wall stresses and
transpiration; ---- , control includes wall stresses only; —-— , no control, uses wall stress model
of [36]; - , logarithmic reference profile, u}; = 2.41Iny* + 5.2.

and the third grid point but its amplitude is much smaller than with the shifted model. The deficit
in the log-law intercept is of order 0.25 compared to 1.35 in [36].

Note that the optimized wall stress boundary conditions produce a mean velocity profile that
is nearly -exact for the first two grid points. The small error in the channel interior is believed
to be due to the sub-optimal formulation in which the wall stresses are optimized only over each
time step. However, the result in Figure 3.2 shows a clear improvement in comparison with the
shifted model. An additional computation was performed where only 7{% was optimized (u3 was set
to zero at the wall), resulting in a mean velocity profile is intermediate between the two previous
computations. The conclusion is that both 71% and 7§% must be optimized (or modeled carefully)
if a velocity profile close to the target one is sought. The case of control with wall stresses and
transpiration velocity is also plotted in Figure 3.2, which will be discussed later in Section 3.4.

3.3.2 Shear stress structure

From Eq. (1.1), the wall shear stresses in the LES with the shifted model should be perfectly
correlated with the velocity components at the first plane, shifted in the upstream direction by the
amount A,. This is shown in Figure 3.3 which displays typical iso-lines of 7{%, u, 733 and w. The
upstream shift is only a fraction of the cell size, viz. A; = 0.67Az, and is hardly visible in the figure.
Both 71% and u are characterized by elongated structures in the streamwise direction while 73} and
w are characterized by more rounded structures in the z — z plane. The reference data from the sub-
optimal computation are plotted in Figure 3.4. The perfect correlation between the wall stresses
and the velocity components at the first off-wall plane no longer holds. The streamwise velocity
u still displays elongated structures in z as well as 73. In contrast, 7{% and w are less elongated.
Eight fields from the sub-optimal LES have been used to compute correlation coefficients between
the velocity gradients, the velocity components at the first off-wall plane and the wall stresses.
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Shifted Model

Figure 3.3: From top to bottom: Contours of 7{%, u, 733 and w from the LES with the shifted model
of Piomelli et al. [36] at Re,; = 4000. The velocity components are from the first off-wall plane.

The best results (those with the correlation greater than 0.3) are reported in Figure 3.5. The
position of the perfect correlations between 7{% and u, 7§} and w which are assumed in the shifted
model [36], Eq. (1.1), is also reported. Note that in the sub-optimal calculation, 7{% is almost not
correlated with the streamwise velocity downstream shifted by A;. The correlation is better when
an upstream shifted version of u is used instead. On the other hand the maximum of correlation
between 73} and w is located close to the assumed downstream shift A;. The best correlation for
7% is found with the spanwise derivative of w, whereas 73} best correlates with du/dz. Other non
negligible correlation coefficients are found between 7{% and du/dz, and 733 and dv/dz. No clear
picture is available yet to explain these correlations. Finally, note the fairly good and somewhat
expected negative correlation between 7{% and v. This correlation supports the underlying idea
in the ejection model of Piomelli et al. [36]. A more systematic way of exploiting correlations
between the approximate boundary condition and the velocity field close to the wall is presented
in Section 3.5.

3.3.3 Discussion

The reduced deficit in the intercept with the sub-optimal computation is associated with a better
representation of the gradient of the mean velocity profile within the first few grid points. This is
better seen in Figure 3.6 which displays the quantity syt d (u)* /dy™ as a function of the distance
to the wall. Theoretically, this quantity should be equal to unity in the case where the sub-
optimal strategy is used since the value of k is taken to be x = 1/2.41, consistently with the target
velocity profile (u)t = 2.41lny* + 5.2. For the case where the shifted model [36], Eq. (1.1), is
used, this quantity is not expected to be exactly unity since the value picked for x is somewhat
arbitrary. However this quantity is constant if the mean profile follows a logarithmic behavior.
Practically, ky* d(u)™ /dy* is not found to be equal to unity when computed from the exact log
profile (u)t = 2.411ny* + 5.2 because of the large errors associated with the second-order finite
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Sub-optimal Control Wall Model

Figure 3.4: From top to bottom: Contours of 7%, u, 739 and w from the LES with the sub-optimal
strategy at Re; = 4000. The velocity components are from the first off-wall plane.
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Figure 3.5: Best correlation coefficients for (a) 774, (b) 733. , sub-optimal computation; e ,
shows the position where the correlation between 7{% and u, and 73} and w in the shifted model of
Piomelli et al. [36] is assumed to be unity.
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Figure 3.6: Non-dimensionalized mean velocity gradient xkyt d (u)™ /dy* for Re, = 4000. ,
sub-optimal computation; —— , Shifted model of Piomelli et al. [36]; ~—-- , not exact differenti-
ation applied to (u)* = 2.41Iny* +5.2.

differences on the coarse grid considered. This is shown in Figure 3.6 which also demonstrates that
the non-dimensionalized mean gradient from the sub-optimal computation follows closely (to within
8%) its value from the exact log law. The mean gradient from the computation with the shifted
model [36] is 256% below its expected value, which explains the deficit in the intercept observed in
Figure 3.2.

The mean velocity gradient appears in the mean momentum equation which reads:

0 (u) du
I\ ou
(u'v')y =y + rm + <Vtay> (3.26)
This equation reduces to: iy
Ofu)  (uv)—y
I~ : .2
dy v+ () (3.27)

under the usually well verified assumption (ut‘g—;> ~ (1) < g’-y‘). Eq. (3.27) reveals that for a given
amount of eddy viscosity, the mean velocity gradient is directly related to the difference between
the total (—y) and resolved (— (u'v’)) shear stress, viz. (u'v') —y, the larger the difference the larger
the gradient. This is confirmed in Figure 3.7 which shows that the artificial condition provided by
the sub-optimal strategy leads to an equilibrium in which the resolved part of the stress is smaller.
It is also worth noting that the quantity (u'v') — y is quite different in the two computations
but that the absolute value of the resolved stress are both close to unity (| (u'v) |max ~ 0.9 for
the computation with the shifted model of Piomelli et al. [36], | (u'v') |max = 0.86 for the sub-
optimal case). Since there is a large difference in the velocity gradient (it is 30% higher in the
sub-optimal case), the production of kinetic energy — (u'v’) d (u) /dy is necessarily greater in the
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Figure 3.7: Difference between the total and the resolved stress for Re, = 4000. , sub-optimal

computation; —— , Shifted model of Piomelli et al. [36].

sub-optimal case, as shown in Figure 3.8a. Figure 3.8b shows that this is also true for the dissipation
rate of kinetic energy, a direct consequence of the fact that production and dissipation balance
reasonably well in this high-Reynolds number channel flow. Note that the total dissipation is very
well approximated by the subgrid scale (SGS) dissipation egg = (2145;;5;;) that has been reported
in Figure 3.8b. The SGS dissipation can further be approximated (to within a few percents) by
€approx = 2{14) (S5;;Sij). The form of the approximate dissipation €upprox indicates that the sub-
optimized boundary condition can act on the flow field and generate an equilibrium with higher
dissipation in the near wall region by either increasing the mean eddy-viscosity or increasing the
velocity fluctuations. The mean eddy-viscosity profiles in the two computations are found to be
almost identical (not shown). The turbulent fluctuations are higher in the sub-optimal case than in
the shifted model [36] computation, see Figure 3.9. The agreement with the fully-resolved LES data.
of Kravchenko et al. [24] turns out to be better with the sub-optimized boundary condition regarding
the normal and spanwise direction, worse regarding the streamwise direction. In any case, the
reasoning given above indicates that the increase in the turbulent fluctuations when the sub-optimal
strategy is used, Figure 3.9, is consistent with the previous findings on the mean velocity gradient,
Figure 3.2, resolved shear stress, Figure 3.7, turbulence production and dissipation, Figure 3.8.
Similar results have been obtained for two other Reynolds numbers, namely Re, = 640 and
20000 (not shown). For the first case, the mean velocity profile from the sub-optimal computation:
is slightly closer to the logarithmic law than that obtained from the shifted model [36]. For the
case Re, = 20000, the deficit in the intercept is the same than for the case Re, = 4000, viz. 0.25.
Also the profiles of turbulent fluctuations do not change if plotted in outer coordinates y/h. This
means that the asymptotic regime in terms of Reynolds number has been reached: results of the
same quality as above can be obtained for arbitrarily large Reynolds numbers with the same coarse
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Figure 3.9: Root-mean-square of velocity fluctuations with objective to control mean flow only.

, control includes wall stresses and transpiration; ---- , control includes wall stresses only;
-------- , reference profiles from [24).
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grid.

3.4 Results: optimal control with transpiration velocity

The results presented in the previous section were computed assuming that the wall-normal velocity
is identically zero at the boundary. However, since the no-slip boundary condition cannot be applied
without adequate near-wall resolution, perhaps it does not make sense to insist that the velocity
normal to the boundary is zero. After all, a wall model should capture the effects of the near-wall
turbulence on the outer flow, including such hallmarks of near-wall turbulence as ejections and
sweeps. The combination of non-zero boundary-normal velocity with wall stresses should allow the
wall model to influence more of the computational domain than wall stress boundary conditions
alone, since the boundary-normal velocity affects the entire flow directly via the continuity equation.

3.4.1 Objective function for mean flow only

Transpiration velocity is now added to the control set to determine if there is an improvement of
the prediction of the mean velocity profile. To test the influence of transpiration velocity only on
the mean velocity profile, the constants §; in the objective function, Eq. (3.4), are set to zero so
that only the desired mean velocity profile is targeted. For this simulation the parameters in the
objective function (3.4) were: oy = a3 = 1,8, = f2 = B3 = 0,71 = 73 = 1074, 42 = 0.02, and
X = 0. The relaxation parameter in the steepest descent algorithm was p = 10°.

The new mean velocity profile is plotted in Figure 3.2 as the solid line, which shows that, indeed,
the addition of the transpiration control improves the mean profile slightly over the case when only
wall stress controls are considered. Also shown in Figure 3.2 is the mean velocity profile obtained
by using the simple wall stress model of [36], Eq. (1.1), that correlates the streamwise wall stress to
the streamwise velocity at a point away from the wall and slightly downstream. The latter model
yields results that are typical of most current wall stress models for this flow configuration.

The improvement in the mean velocity profile is encouraging. However, this is obtained at the
expense of turbulence intensity. Figure 3.9 shows the root mean square (rms) velocity fluctuations
for the sub-optimal wall stress boundary conditions with and without the addition of transpiration
velocity control. The rms velocity fluctuations actually increase with the addition of transpiration,
which is certainly in the wrong direction since the fluctuation intensities are already over-predicted.

3.4.2 Objective function including mean flow and rms velocities

In this case, the objectives of matching the rms velocities of Kravchenko et al. [24] are added
into the cost function. For this simulation the parameters in the objective function (3.4) were:
ar=a3=1,B1=F=PF=3x10"41 =5x1059 =10"3,93=4x10% and A =5 x 1073,
The relaxation parameter in the steepest descent algorithm was g = 500 for ¢, and 105 for ¢y,
and ¢y,.

Figure 3.10 shows the rms velocities when the rms component is included in the objective
function. As illustrated in Figure 3.10, the prediction of the rms velocities improves when the
transpiration velocity control is added; however, the streamwise rms velocity is still over-predicted
near the wall. Not shown for this simulation is the mean velocity profile, which in this case is not
as good as the mean velocity profile that is achieved in the previous section when only the mean
velocity profile is targeted by the controls. If shown, it would lie between the two mean velocity
profiles in Figure 3.2 corresponding to control by wall stress only and control by wall stress plus
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Figure 3.10: Root-mean-square of velocity fluctuations with objective to control mean flow and
rms velocities. , control includes wall stresses and transpiration; ---- , control includes wall
stresses only; ------- , reference profiles from [24].

transpiration velocity. Furthermore, the region in which the improved predictions occur is limited
to approximately the first three grid cells adjacent to the wall.

The results of this simulation show that the prediction of velocity fluctuation intensities can be
improved by the addition of a wall-normal velocity approximate boundary condition. But, the fact
that the mean velocity profile is not as well predicted when the velocity fluctuations are targeted
through the objective function suggests that the objectives of getting the correct mean velocity
profile and the correct rms velocities may be competing objectives.

3.5 A simpler wall model from LSE of wall stress data

While the sub-optimal control strategy for generating wall stresses could be used as a wall model
for coarse-grid LES, its cost is approximately 20 times greater than of an LES on the same grid
compared to an explicit wall stress model such as Eq. (1.1). Furthermore, a target mean velocity
profile must be provided to define the objective function. It may be possible to lower the cost
of control strategy, but that possibility is not investigated here. The real strength of the optimal
control strategy is that it yields wall stress boundary conditions that work for coarse-grid, high
Reynolds number LES. Thus, a reference data set can be generated against which new wall models
can be compared. The reference data can even be used to derive new wall models. Such an approach
is described in this section.

The most desirable wall stress model would be similar to Eq. (1.1) in that it would be an explicit
relation between the wall stresses and the velocity field. One could, for instance, require the wall
stress model to be the best possible mean square estimate of the sub-optimal wall stress as a
function of the velocity field in a neighborhood of the point where the wall stress is required. This
is the conditional average of the wall stress given the local velocity field (a conditional average is
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necessary because the wall stress may have a stochastic, or unpredictable, component with respect
to the local velocities). It is denoted by (7}3(z, z)|E), where E is a vector of events. In the present
study, E will be a vector containing the local velocity field, but it could easily contain pressure,
velocity gradients, quadratic products, or any other quantities which might characterize the wall
stresses. The conditional average embodies so much statistical information that it is unlikely that
it could be found exactly, but it can be approximated by its linear stochastic estimate (LSE), given
by (see [3] for instance):

(r5(z, 2)|E) = #3(z, 2) = Li; E; i=13, j=1243,...,N, (3.28)

where N is the number of events being considered, and L;; are estimation coeflicients relating 75
to E;. By the statistical orthogonality principle [34], the mean square error between 7% and 7% is
minimized when the event data are uncorrelated with the error e; = 7§ — ¥3:

(eiBx) = ((ri3 — 73) Ex) = 0. (3:29)
Substituting Eq. (3.28), the estimation coefficients L;; are governed by:
(ngEk) = Lij (EjEk). (330)

The matrix (E;Ey) is invertible provided the events are linearly independent. Thus, to obtain the
LSE, the correlations (75 Ex) and (E;Ey) must be found and the events must be selected that best
characterize the wall stress.

Though the technique employed here is essentially the same as that of Bagwell et al. [7], the
results are different since the reference data used here is already known to work well for a coarse grid
LES, whereas Bagwell’s reference data comes from a direct numerical simulation at low Reynolds
number. As will be shown below, an event field consisting of the nearby velocities is sufficient to
yield wall models of the form (3.28) that have greater than 80% correlation with the optimal wall
stresses. Moreover, the new wall models, when used in an LES, will be shown to reproduce the
results of the sub-optimal control LES.

3.5.1 LSE predictions

To implement the LSE, eight velocity fields, well separated in time, and their sub-optimal wall
stresses from the Re; = 4000 simulation discussed in Section 3.3 were used. In implementing the
LSE, it was found that better results were obtained by estimating only the fluctuating part of the
wall stresses from the fluctuating part of the velocity field. To this end, the instantaneous plane
averaged wall stress was subtracted from the wall stresses and the average over the first off-wall
plane of the horizontal velocity was subtracted from its velocity component for each sample. The
LSE can be written as a convolution sum in the wall-parallel, homogeneous directions. The exact
form of the LSE wall model for the fluctuating part of the wall stresses is given by:

"vﬁllm,n = Zz Z i Luk [Um—ijn—k — (u(-y1,))]

k=—n; j=1i=—ng

N+l Ny ng—1

+ Z Z Z Ly 0m—i jink» (3.31)

k=-n; j=1i=-n;
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nz—1 Ny ng+1

32 lmn = Z Z Z L%lk [um—-i,j,n—k —(u(-,y1,°))]

k=—n, j=1i=—n,

iz ny n
+ )2 Y Lwnigak (3.32)

k=—n; j=1i=—n,

where the parameters ng,ny,n, determine the number of velocity points used in the convolution
sums to estimate the wall stress at each wall location (denoted by the subscript pair m,n). Note that
the summation relating ‘r}’é’ and the spanwise velocity w has different indices than the summation
for u in Eq. (3.31). This is due to the staggered grid. Also note that the wall-normal velocity does
not appear in the LSE wall model. This is because the wall-normal velocity is linearly dependent
on the wall-parallel velocities and thus cannot be used as an independent event in the LSE. The
coefficients L1, L13, L3! and L3, are determined by requiring that the error be orthogonal to the
events (velocities) as in Eq. (3.29).

For an a priori comparison of the wall stress fluctuations predicted by the LSE and those of the
optimal strategy one possibility is to compute the correlation coefficient:

Cu = (<f5’)2(>?/22@')2>1/2’ (3:33)

where i = 1,3 and the average denoted by, (-), is taken over all of the samples. Another frequently
used quantity for comparison is the relative mean square error:

7Y — )2
R = &W (3.34)

where, again, 7 = 1,3.

Table 3.1 shows the correlation coefficients and relative mean square error for several choices of
the parameters ng,ny, and n,. The first noteworthy observation is that the correlations between
the sub-optimal wall stress fluctuations and those predicted by the LSE, Egs. (3.31) and (3.32)
increase significantly when velocity data is included from the first two wall-parallel planes (compare
ny = 1 and ny = 2). The estimates with n, = 15 and n, = 15 use nearly all of the velocity data
in each wall-parallel plane, but note that this results in little improvement over the comparable
ng = 4,n, = 4 results. Figures 3.11-3.14 show contour plots of the LSE coefficients for the case
ng = 2,ny = 2,n, = 2. Each figure contains two plots, the top plot corresponding to the first plane
of velocity data and the bottom plot to the second. The plots indicate several symmetries in the
LSE coefficients. For example L*! is symmetric with respect to reflection in the spanwise direction
whereas L3 is anti-symmetric. These symmetries could be exploited to reduce the number of free
coefficients in a wall model, but we have not explored that here.

Bagwell et al. [7] used entire planes of velocity data to form the LSE, but as results in Table 3.1
suggest, a small number of data points may be sufficient. These a priori results suggest that the
LSE can reproduce the sub-optimal wall stress fluctuations reasonably well, but even correlations
in excess of 80% do not guarantee that the LSE can perform well as a wall model. This can only
be checked via an actual simulation.

3.5.2 LSE wall model results

The LSE was used to model the fluctuating portion of the wall stresses in terms of the velocity field
and must be combined with a model for the mean wall stress to be used as an LES wall model.

27



0.1308

0.0654

~0.0654 |- -

-0.1308

0.1309

0.0654

-0.0654

-0.1309

-0.3927 ~0.1963 ) 0.1963 0.3927

x

Figure 3.11: Contours of LSE coefficient L!! for ng = 2, ny = 2, and n, = 2, in the zz-plane. The
top plot is for the first plane (j = 1) and the bottom plot is for the second plane.
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Table 3.1: Correlation coefficients and relative mean square errors for the LSE wall model fluctu-
ations versus the sub-optimal wall stress fluctuations for different numbers of velocity data use in
the estimates. The fifth line, set apart by horizontal lines, is for the coefficients used as an actual
wall model in Section 3.5.2.

Ine[ny [n: || Cia [ Caz | Rip | Ry |

1 {1 |1} .45 .59}.781 .65

4 (1| 41 48| .64 | .77 | .59

151 | 15| .51 | .66 | .74 | .57

1 2 1 73 |1 .82 | 46 | .32

2 2 2 76 1 89 | 42 | .21

4 2 4 78 1 .91 ] 40 | .18

151 2 |15} .79 | 91 | .37 | .18

2 3 2 79 |1 .90 | 42 | .21

4 3 4 81 92| .34 ] .15

The actual model used is:

Tluélm,n = (ri2) + 7"luélim,n (3.35)
Tilmn = 75 lmns (3.36)

where 7% and 7"§”2' are given by Egs. (3.31) and (3.32), respectively. The mean wall stress (71%) is
found by assuming that the plane-averaged streamwise velocity at the first off-wall grid location
and the mean wall stress are related by the logarithmic law of the wall:

(u1(:,91,7)) = ('rl"{,)l/2 2.41 Iog(w) +5.2]. (3.37)

By using the LSE wall model (3.35) in the same flow discussed in Section 3.2.1, with Re, = 4000
and the same resolution, it was found that the wall models based on the one plane LSE, n, = 1
resulted in mean velocity profiles (not shown here) that were not as good as the profiles from the
sub-optimal simulation. However, the wall model based on the two plane LSE was able to reproduce
nearly exactly the results of the sub-optimal simulation. Shown in Figure 3.15 is the mean velocity
profile from a simulation with an LSE wall model of the form (3.35) with ny = 2,n, = 2,and n, = 2.
Simulations with LSE models based on smaller stencils of velocity data did not work as well, whereas
LSE models based on larger stencils reproduced the sub-optimal results. The turbulent fluctuations
are also in perfect agreement with those of the sub-optimal wall stress simulation; see Figure 3.16.

These results are remarkable in that the wall stress model (3.35) reproduces the results of the
sub-optimal simulation at a cost only slightly higher than that of a simulation with no wall model.
However, the model given by Eq. (3.35) will not be of much use if new coefficients need to be derived
for different Reynolds numbers or for different grid resolutions. Fortunately, we have found that
simulations with Eq. (3.35) perform well over a large range of Reynolds numbers using the same
coefficients derived from the Re, = 4000 sub-optimal data. Figure 3.17 shows the results of using
Eq. (3.35) at Reynolds numbers: Re, = 640,4000, and 20000. The simulations were conducted on
the same uniform grid as the Re; = 4000 simulation with the log law, Eq. (3.37), used to determine
the mean wall stress. In the Re, = 640 LES, the log law was used to relate the plane-averaged
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Figure 3.15: Mean velocity profiles for Re, = 4000. , sub-optimal computation; —— ,
Shifted model of Piomelli et al. [36]; -=--- , LSE model; —— , (u)* = 2.41Iny* +5.2.
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Figure 3.16: Root-mean-square of velocity fluctuations for Re, = 4000 and uniform 32 x 33 x 32
grid. , sub-optimal computation; ---- , LSE model.
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Figure 3.17: Mean velocity profiles from LES’s with the LSE model on uniform 32 x 33 x 32 grid:
, Re; = 640; ---- , Re, = 4000; ——— , Re, = 20000; — — , (u)* = 2.41lny* +5.2.

streamwise velocity from the second plane to the mean wall stress because the first plane is in the
buffer region at y* ~ 20.

Similarly, the same coefficients were used with Eq. (3.35) in a simulation with a refined grid at
Re; = 20000. The number of cells was doubled in each direction to 64 x 65 x 64. The resulting
mean flow profile is shown in Figure 3.18. The log region intercept is still slightly underpredicted,
but the mean flow now exhibits a wake-like behavior near the channel center as has been observed
in high Reynolds number channel simulations in which the near-wall region is resolved [24].

Unfortunately, this simple linear model is not going to be a panacea. Figure 3.19 shows the
mean velocity profiles for several channel flow LES’s at Re, = 4000, all using the same number
of grid points as the simulations discussed above and using the simple linear wall stress model
previously derived. In each case some reasonable modification has been made. For instance, a fully
conservative fourth order finite difference scheme was used, and, as shown in the figure, the mean-
velocity is under-predicted. To test the effects of the numerics on the efficacy of the wall model,
two different things were tried: stretching the grid in the wall-normal direction and modifying the
dynamic procedure as suggested by [13]. As Figure 3.19 shows, the simple linear wall stress model
performs worse in every one of these cases than in the original simulation for which it was designed.

3.6 Conclusion

A suboptimal control strategy has been successfully applied to a coarse grid LES of a channel
flow at high Reynolds number. The two objectives of this study are: 1) to demonstrate that a
control strategy can determine approximate wall boundary conditions that result in an accurate
LES, and 2) to find a simple wall model using these results. In both cases, the work can be judged
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Figure 3.19: Mean velocity profiles using fixed, simple linear model for the wall stresses. ------- ,
logarithmic reference profile u:' = 241lny* + 5.2; , model reproduces mean profile when
used in same setting that it was derived; ---- , same model with fourth-order finite differences;
—-— , same model with modified dynamic procedure as in [13]; - 0 -- , same model with stretched
wall-normal grid.
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a partial success. The sub-optimally controlled LES, using both wall stresses only and wall stresses
and transpiration velocity, is able to generate mean velocity profiles in good agreement with the
logarithmic law. It is also determined that the wall stresses provide most of the control authority in
this situation. However, the rms velocity fluctuations, particularly the streamwise component near
the wall, are not well predicted using this scheme when the objective function includes the mean
flow only. When the objective function is enhanced to include a component targeting the reference
rms velocity fluctuations of Kravchenko [24], modest improvement is observed, but the streamwise
rms velocity remains overpredicted near the wall. Furthermore, the objective of matching the rms
velocity fluctuations appears to compete with the objective to match the mean velocity, resulting
in a slightly less accurate mean profile.

The data generated from the simulations using wall stress control only have been used to derive
a LSE model which predicts the wall stresses from the near-wall velocity field. The LSE model
is found to work well over a wide range of Reynolds numbers using the same grid and numerical
methods. However, when applied to LES at the same Reynolds number that the training data are
generated, but with different numerical methods, the same model is found to perform poorly. This
provides additional evidence that non-physical errors, namely numerical and SGS modeling errors,
play a critical role in the wall modeling problem and must be addressed for an adequate solution
to be found.
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Chapter 4

New Directions in Control-Based Wall
Modeling

Many important lessons were learned from the control based wall modeling work discussed in the
previous chapter. Unfortunately, this approach is impractical due to the high computational cost
required for the suboptimal control, which requires both the solution of adjoint equations and
many iterations to achieve convergence in the wall stresses. Furthermore, the cost function is based
on known target data, making the model non-predictive. The LSE models generated from such
computations are t0o sensitive to the numerical parameters to construct a universal LSE coefficient
database. Thus, a low-cost, robust wall model is needed to achieve the accuracy of the sub-optimal
control technique without an a priori target solution. To this end, a cost function based on a
RANS solution will be constructed in Section 4.1 to make the model predictive, and in Section 4.2,
the problem will be formulated in an optimal shape design setting in an attempt to reduce the
computational cost. Some test results and discussions are presented in Sections 4.3 and 4.4.

4.1 Cost function

In order to make the wall model predictive, an easy-to-evaluate cost function near the wall using
quantities not known a prior: must be defined. To this end, a RANS model is used to provide the
target velocity. This is motivated by the recognition that the near-wall region of a high Reynolds
number boundary layer is more appropriately modeled by RANS than by a coarse grid LES with
filter length larger than the integral scale of the turbulence.

In the present work, the RANS model is obtained from the simplified version of the TBL equation
model introduced in Chapter 2,

du"] _1o i=1,3 (4.1)

Llotneni] =1
dy Py | T pom

LES,
+ —y+/a\? +
ve (y) = kvy (1 —e ) y Y =yu v

These equations model all Reynolds stresses through a damped mixing-length eddy viscosity, and
explicitly account for the pressure gradient which is assumed constant across the wall layer and is
imposed by the LES. To complete the model, a no slip condition is applied at the wall and the
outer boundary is set to be the LES velocity. The resulting velocity profile should be interpreted
as the ensemble averaged velocity profile given the local LES state. It can therefore be expected
that, on average, the resolved LES should match the RANS solution near the wall. Note that this
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model is chosen for simplicity in this initial attempt, and there are likely better models for this
application that will be explored in future work.

In an overlapped region consisting of N LES grid points in the wall-normal direction, cost
functions are devised to match the LES and RANS solutions on average. An attractive method in
a statistically stationary flow would be to use a running time average to provide the target velocities.
However, if the control authority is restricted to the current time, this approach becomes impractical
since the flow at the current time would contribute only a small fraction of the total cost function.
This makes it difficult to determine the control since the cost function is insensitive to it. If the
control is explicitly computed as a function of time, then adjoint equations have to be integrated
backward in time to find a correct solution over a sufficiently large time window which contains
enough statistical samples.

An alternative is to use the current state as the statistical sample. Thus, the first cost function
is defined to be the L5 difference between the LES and RANS states:

N
Je, = /s > ((UR_ANS,IIyn — urgs,1ly.)” + (URANS 3y, — uLES,3|yn)2) ds, (4.2)
n=1

where S is the surface and y, are the locations of the n overlap points. In this way, a sufficient
number of samples of the flow state are used to make a meaningful average. Also, the cost function
is based only on quantities at the current time step, so no history information is required. This
type of cost function is also compatible with the gradient evaluation methods used in this work
(see Section 4.2).

Other cost functions can also be formulated for this problem. A cost function based on the
average deviation of the LES and RANS is:

N 2
Ja= ( /S > ((urans,ily, — uesly,) + (uraNs 3ly. — uLES 3ly)) dS) : (4.3)
n=1

This cost function is similar to that used in [33]. However, as shown in Section 4.3, this cost
function performs quite poorly. Analysis of its gradients indicates that they do not capture the
sign information correctly in some regions (gradient computation will be discussed in the next
section). In order to retain more information and move in the direction of feedback control, a
signed cost function has also been used:

N .
Js = /s Y (uransly, — uLes,ly.) + (urANS 3lyn — uLBS 3lya)) 5. (4.4)
n=1

When this cost function is used, the control strategy is shifted to force the cost function to zero
rather than minimizing it. It was thought that this approach might better take advantage of the
method being used for gradient evaluation, but it only resulted in a moderate improvement (see
Section 4.3).

The choice of N in Egs. (4.2)-(4.4) should be made to include as many matching layers as
possible while remaining in the region where the RANS model is a reasonable approximation for
the given local flow. Furthermore, the LES velocity too close to the wall may involve large errors
(see [12]) and thus is not suitable as a RANS boundary condition. In the calculations presented in
this article, N has been chosen to be three.

Two important points should now be noted. First, while all the cost functions here are based
on matching RANS and LES velocities, other quantities could also be used. These could include
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matching vorticity or energy fluxes with suitable models. Second, it may not be possible or desirable
to reduce the cost function to zero. Doing so could artificially reduce the turbulence fluctuations
of the flow. Also, if an inexpensive scheme is required, it may not be possible to fully optimize the
solution. Thus, the cost function must act as a suitable quantity for feedback regulation, rather
than for minimization.

4.2 Optimization using shape design techniques

Optimal shape design consists of a set of techniques for optimizing a shape to achieve an engineering
objective (e.g. [31]). Several approaches have been developed in this field that have had some success
in reducing the computational expense of the optimization procedure. In an attempt to bring these
techniques to bear, the wall modeling problem is formulated in this framework.

In general, the formulation is to consider a partial differential equation A (U, g,a) = 0 in a region
(2 satisfying boundary conditions b (U, g, a) = 0 on 892. The optimization is performed to determine

main{J (U,q,a) : A(U,q,a) =0Vz € Q,b(U,q,a) = 0Vz € 60} (4.5)

for some cost function J (U, ¢,a). In this formulation, U is the state, ¢ the shape, and a are the
control variables. The gradient of the cost function with respect to the control variables is then:

dJ _9J 9Jdq  9J U dq

da =92 T 9q0a T 50 54 5a’ (46)

The standard technique for solving this equation is to use an adjoint method interfaced with a
gradient minimization technique. But, as previously noted, this can be expensive and present data
storage difficulties in time-accurate computations. Since it is the last term in Eq. (4.6) that requires
the adjoint evaluation, Mohammadi & Pironneau [31] suggest the following assumption when the
controls and the cost function share the same support:
aJ 8J  0Jdq

da " e T 8q da’ (47)

This assumption is called the method of incomplete sensitivities since the sensitivity to the state
gradient is ignored. The use of this method has been explored in this work since it has produced
positive results in the optimization of aerodynamic shapes. For examples, see [29, 30, 31], although
these are all steady, two-dimensional applications. Since no rigorous proof on the applicability of
this technique exists and its usefulness is based on purely empirical studies, it was not known how
well it would perform in a full LES. Furthermore, the present cost function is not defined exactly
on the support of the control, although it is defined in a small neighborhood of the control. While
these factors will produce errors, the gradient evaluation needs only accurately predict the sign of
the gradient and capture to some degree the difference in magnitudes of the derivatives with respect
to different control parameters. A goal of this work is to determine if the amount of information
contained in this gradient is sufficient for application to wall boundary conditions.

In order to apply the incomplete sensitivity assumption, the control must be related to shape
design parameters. B-splines spaced evenly along the surface (although not enough to form a com-
plete basis) are used to parameterize deformations normal to the surface. The control parameters,
a;, are then the spline amplitudes. The gradient of the cost function with respect to these param-
eters can be computed using finite differences by perturbing each parameter by a small value, ¢,
and then using Eq. (4.7) to evaluate the gradient based on the current state information. It is not
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necessary to recompute the actual geometry or grid because all the state variables of interest can
be stored and matched to the new surface. The parameter ¢ is chosen a priori by making it small
enough such that the gradient values are independent of if.

Once the cost function gradient is known, the new spline amplitudes can be computed by

aJ
Bai ’

where p is a descent parameter set in advance and k is the iteration count. The new shape is
computed by adding the surface perturbations to the previous shape. To relate this to the wall
stresses, the RANS model is used to compute the correction to the equivalent slip velocity on the
original surface:

k+1 __
a;" " =

af—p (4.8)

ufv,i = fRANS,‘i (ynew) » =13, (49)
where f stands for the RANS model given by Eq. (4.1). This approach is inspired by a Taylor
series expansion about the wall [31]. In this way, it is not necessary to change the computational
geometry of the LES.

The total slip velocity is given by adding the correction ug,; to the old wall slip velocity. Cor-
rected wall stresses can then be computed directly by definition
1 —ug;
- o . _ w,t
Twi = Tuyi + Re Azy’

(4.10)

where Az is the local wall normal grid spacing.

While this approach avoids the evaluation of a set of adjoint equations, iterations are still
required to converge the solution. Additional function evaluations are also often used to determine
an optimal choice for p at each iteration. In order to make the wall model practical, these costs
must be avoided. Therefore, no iterations are performed at each time step. The cost function
gradients are computed and used in a feedback manner to provide a correction. Every q; is reset
to zero at each time step. Also, p is taken to be a fixed parameter similar to the gain in a feedback
controller. To make up for some of this lost information, a predictor-corrector approach to the
control algorithm will be used. This is done by using Eq. (4.1) to compute a prediction of the
wall stress before the optimization is used. It is expected that the prediction will account for the
missing physics in the coarse grid LES while the optimization will correct for the numerical and
SGS modeling errors. While this approach must be classified as sub-optimal, it is still reasonable
to expect a-cost function reduction if at each time step the LES velocity is forced in the direction
of the reduced cost function.

4.3 Results

The application of this method to the trailing edge flow simulated previously by Wang & Moin
[41, 42] has produced mixed results. The first goal is to justify the incomplete sensitivities assump-
tion. The L, cost function history is shown in Figure 4.1. While the average value is reduced
approximately 15% from the initial value, this is not completely out of the range of the cost func-
tion fluctuations. It is therefore inconclusive regarding the validity of the assumption. As shown
in Figure 4.2, the predicted wall stress matches the full LES wall stress quite well in some regions
for the L7 and signed cost functions, but performs poorly in other regions. The separation point
is predicted reasonably accurately for both these cost functions. As previously indicated, the av-
erage cost function performed more poorly. Figure 4.3 contains a comparison between the £, cost
function results and the predictor alone. The new results are much better in the region near the
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skin friction peak, although they produce a less smooth skin friction profile, and rather large errors
remain in part of the adverse pressure gradient region. Overall, the model demonstrates some
improvement over the simple wall model used as a predictor, but is less accurate than the full TBL
equation model used in [42].

Comparison of the velocities between the full LES and wall modeled LES (based on the £y cost
function, which produced the best results) are quite good. As shown in Figure 4.4, the coarse grid
LES is able to match the resolved LES very closely. The main (moderate) discrepancy occurs in
the turbulent intensities near the wall. This is not unreasonable since these quantities were not
included in the cost function and it may in fact not be possible to capture these regions accurately
because the LES grid does not resolve the intensity peak. When compared to the results of [42]
using only the predictor, the results are found to be comparable and in fact are worse for the two
cost functions not shown. Therefore, it is difficult to draw definitive conclusions about the effect of
the gradient based optimization procedure on the velocity field.

4.4 Channel flow analysis

In order to evaluate the proposed wall model in a more controlled environment, the algorithm has
been implemented in the plane channel LES described in Chapter 3. This is a simpler and well
known case, so the model can be more readily analyzed. It was immediately noticed that, unlike
the trailing edge case, the cost function gradients could not be made independent of the small
parameter € used in the finite-difference computation. The gradients monotonically decreased with
€ until they reached a value of zero. This result indicated that the incomplete sensitivity approach
did not accurately capture the gradients in the channel, since non-zero gradients were observed in
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the sub-optimally controlled channel. The following analysis is used to explain these results, as
well as the difficulties encountered with this method in the trailing edge geometry.
Consider a cost function of form

J(a) = /S £ (u(a))ds. (4.11)

Since in the current framework, the shape and shape deformations are defined in two dimensions,
the surface can be parameterized by taking the y coordinates as a function of z, i.e. y = g(z).
Then the cost function becomes

l
J(a) =/0 f(u(z;a))v/1 + g?%(z)dz. (4.12)

Consider a perturbation to this surface parameterized by eh(z). In the current context, h(z) would
correspond to the spline and € to the small change in the control parameter. The new cost function
is computed by considering its sensitivity to geometry only, so

l
Ja+9= [ fulz ) I+ 7@ + @) (413)
0
By using a Taylor series expansion, one obtains to O(e):
V1+(g'(z) + el(2))? = 1+ g%(z) + e(1 + ¢ (2)) /g (z)H (). (4.14)
When the gradient is computed by taking (J(a + €) — J(a))/¢, the resulting term is
aJ _ [ -
% =~ | fuma)t + o2 @) @ @)ds. (4.15)

This expression explains the observed cost function gradients. First, it has been demonstrated
in both the trailing edge and channel flows that in regions where the surface is flat, the gradients
are zero. This is clear since in these regions, ¢’(z) = 0. A similar observation occurs in areas where
the surface is a straight line. This is because g'(z) is constant and, in this case, h(z) is symmetric,
meaning that whenever h/(z) > 0, there is a corresponding z; such that h'(z;) = —h'(z). Thus,
unless f(u(z;a)) has a very large change between z and z;, since ¢'(z)h'(z) + ¢'(z1)h'(z1) = 0 the
gradient will be very small.

Finally, it has been observed that in regions of curvature away from the direction of perturbation
and for a positive definite f(u(z;a)) (such as the L3 cost function), the gradient is always positive.
This can be seen by examining the product ¢'(z)h'(z). In these regions, ¢’(z) is always negative and
increases monotonically in magnitude. By the symmetry of h(z), the regions where h'(z) is positive
correspond to ¢'(z) having a smaller magnitude, and the regions where h'(z) is negative correspond
to ¢’(z) having a greater magnitude. Thus, the positive contribution is greater in magnitude than
the negative contribution, and hence the gradient is positive since f(u(z;a)) is positive and varies
less than the curvature.

The sensitivity computed by this method is then almost exclusively dependent on the curva-
ture of the function whose information is contained in ¢'(z). It is difficult to determine how this
information could be useful in changing the state u such that the given cost function is minimized
in a rigorous and well defined manner. For any cost function defined as above, the incomplete
sensitivity method will act in a way directly related to the curvature of the surface. If a correlation
exists between reducing this curvature and reducing the cost function, the method may produce
reasonable results. However, there is no reason to believe that, in general, reducing surface cur-
vature will be helpful in wall modeling. In fact, as experience in the channel has demonstrated, a
region of no curvature still requires control to obtain an accurate solution. Therefore, it is likely
that an alternative method must be found for the general application of a wall model.
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4.5 Conclusions and future work

Wall modeling using control theory is a promising new approach for developing robust wall models
which account for not only the unresolved flow physics but also numerical and SGS modeling
errors. In this chapter, a methodology has been proposed to overcome the deficiencies of the model
by Nicoud et al. [33], described in Chapter 3, and make the control-based wall model predictive and
practical in terms of computational expense. Two critical components, namely the use of RANS
velocity profiles as the near-wall LES target in the cost function and the incomplete sensitivity
method for gradient evaluation have been examined and tested in a turbulent trailing edge flow.

Based on the test results, it is clear that the assumption of incomplete sensitivities is not
appropriate for LES wall models with the type of cost function considered in this work. This is at
least partly due to the cost function measuring the LES state in the flow and not at the wall. A
cost function that is more sensitive to the geometry could be better suited, but it is unclear how
to formulate such a cost function for a wall model. Furthermore, there is evidence suggesting that
in applications similar to this, the gradient calculated with incomplete sensitivities may have not
only incorrect magnitude but also incorrect sign [26]. Clearly, a more accurate means is needed to
compute the gradient.

The use of a cost function matching a RANS profile near the wall may however prove useful in
LES wall modeling. It has a solid physical basis, although the RANS model used here is rather
rudimentary. More robust RANS models, such the k-w model are being considered. In addition to
choosing an appropriate RANS model, the choice of matching quantities is also an important factor
in the performance of the model. Matching LES and RANS velocities may prove not to be the best
quantity to minimize for optimal performance of the model. Cost functions based on vorticity or
energy could better account for dynamics that are more important to the large scales in the LES.
An investigation of these cost functions and implementation of a RANS model is underway in a
channel flow.
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